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 2 

ABSTRACT 27 

Background: Delayed or missed diagnosis of congenital heart disease (CHD) contributes to 28 

excess pediatric mortality worldwide. Echocardiography (echo) is central to diagnosing and 29 

triaging CHD, yet expert interpretation remains a scarce and maldistributed global resource. 30 

Artificial intelligence (AI) offers the potential to democratize diagnostics and extend expert-level 31 

interpretation beyond large academic centers, but its application in CHD remains underexplored. 32 

Methods: We developed EchoFocus-CHD, an AI-enabled model for automated detection of 12 33 

critical and 8 non-critical CHD lesions, individually and as composites. The composite critical 34 

CHD outcome was the primary endpoint. The model expands on a multi-task, view-agnostic 35 

architecture (PanEcho) with a transformer encoder to improve focus on relevant echo views. The 36 

model was trained (80%) and tested (20%) on the first echo per patient from Boston Children’s 37 

Hospital (BCH), with external validation on US and international studies from patients referred 38 

to BCH. 39 

Results: The internal and external cohorts included 3.4 million videos from 54,727 echos 40 

(median age at echo 7.1 [IQR, 0.2-15.0] years; 5.8% critical CHD; 23.6% non-critical CHD) and 41 

167,484 videos from 3,356 echos (median age at echo 2.5 [IQR, 0.3-9.4] years; 29.4% critical 42 

CHD; 45.6% non-critical CHD), respectively. EchoFocus-CHD showed excellent internal ability 43 

to detect the composite critical CHD outcome (AUROC 0.94, LR+ 7.50, LR- 0.14) and 44 

individual critical lesions (AUROC 0.83-1.00), as well as composite non-critical CHD (AUROC 45 

0.90, LR+ 5.00, LR- 0.23) and individual non-critical lesions (AUROC 0.70-0.96). Performance 46 

declined during external validation to detect critical CHD (AUROC 0.77), coinciding with 47 

greater expert disagreement on external cases (k=0.72 versus 0.82 for internal cases). 48 

Explainability analyses demonstrated that the model prioritized the same clinically relevant 49 
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views (parasternal long-axis, parasternal short-axis, and subxiphoid long-axis) across internal 50 

and external cohorts, while UMAP analysis revealed a domain shift between cohorts. Retraining 51 

on all available US patients attenuated domain shift, improving international critical CHD 52 

detection (AUROC 0.87) and calibration.  53 

Conclusions: EchoFocus-CHD shows promise for automated CHD detection and highlights the 54 

need to address domain shift for real-world deployment. By identifying high-risk CHD lesions, 55 

this approach could support triage, prioritize expert review, and optimize resource allocation, 56 

advancing more equitable global cardiovascular care. 57 

Keywords: Artificial Intelligence; Pediatric Cardiology; Echocardiography; Congenital Heart 58 

Disease  59 
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Nonstandard Abbreviations and Acronyms: 60 

AI: Artificial Intelligence 61 

AUROC: Area under the Receiver Operating Curve 62 

BCH: Boston Children’s Hospital 63 

CHD: Congenital Heart Disease 64 

Echo: Echocardiography 65 

LMIC: Low- and Middle-Income Countries  66 

LR: Likelihood Ratio 67 

UMAP: Uniform Manifold Approximation and Projection  68 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted January 26, 2026. ; https://doi.org/10.64898/2026.01.24.26344771doi: medRxiv preprint 

https://doi.org/10.64898/2026.01.24.26344771
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

INTRODUCTION 69 

Congenital heart disease (CHD) affects approximately 1 in 100 live births, impacting over 12 70 

million individuals worldwide.1,2 Nearly 25% of CHD cases are critical, often requiring urgent 71 

intervention in the neonatal period to prevent cardiovascular collapse and death.3 Unfortunately, 72 

CHD is frequently diagnosed late in both low-resource4 and high-resource5 countries, reflecting a 73 

persistent diagnostic gap. This challenge is particularly severe in low- and middle-income 74 

countries (LMICs) where the burden of disease is greatest6 and access to diagnostics and 75 

congenital care are limited,6,7 highlighting the global imperative for timely and effective CHD 76 

detection and triage. 77 

Echocardiography (echo) is the cornerstone of pediatric cardiology and CHD diagnosis, 78 

providing non-invasive, real-time assessment of cardiac anatomy and function without radiation. 79 

Pediatric echo interpretation is technically challenging: it requires the interpretation of complex, 80 

heterogeneous lesions in small hearts and is often complicated by motion artifacts and variable 81 

image quality. These challenges are compounded by a global shortage of pediatric cardiologists 82 

and specialized imaging experts,6-8 creating a critical bottleneck for timely and accurate 83 

diagnoses.  84 

Artificial intelligence (AI) has shown promise to address diagnostic gaps in adult echo. 85 

For example, AI-echo models can reliably automate measurements,9-12 assess heart muscle and 86 

valve function,13 or even provide a comprehensive echo evaluation.14 In contrast, transthoracic 87 

AI-echo for pediatric cardiology remains nascent, with prior work largely limited to view 88 

classification,15 isolated measurement tasks,16,17 or detection of specific findings (e.g., patent 89 

ductus arteriosus)18 rather than comprehensive structural screening.19 90 
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To address this technological gap, we developed EchoFocus‑CHD, a multi-task, view-91 

agnostic AI‑echo model designed to automatically detect a broad spectrum of critical and 92 

non‑critical CHD lesions. To evaluate performance under real-world conditions and assess 93 

generalizability, we externally validated the model using echos from 58 countries across 6 94 

continents, with the goal of enabling scalable CHD triage and prioritization in resource-limited 95 

settings.  96 
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METHODS 97 

This study is reported in accordance with the TRIPOD+AI 2024 guidelines.20  98 

Patient Population and Patient Assignment  99 

Patient data and echos were obtained from Boston Children’s Hospital (BCH) between July 2015 100 

and July 2025. Only transthoracic echos with ≥10 DICOM files were included in this study; fetal 101 

echos and echos performed in the operating room were excluded. Echos that did not pass quality 102 

control criteria (see “Data Retrieval, Pre-Processing, and Quality Control” below) were also 103 

excluded. Given our objective to identify previously unknown or unverified CHD, only the first 104 

echo per patient was included. These criteria defined the main study cohort.  105 

 The main cohort was subsequently partitioned into internal studies (performed at BCH, 106 

Brigham and Women's Hospital nursery/NICU, Beth Israel nursery/NICU, or affiliated BCH 107 

satellite clinics) and external studies (outside referral echos read by BCH expert cardiac imagers 108 

for diagnostic assistance or second opinions). The external cohort was further subdivided into US 109 

and international patients. International patients were defined as having non-US home addresses. 110 

Within the internal cohort, patients were randomly assigned in an 80:20 ratio to development and 111 

testing cohorts. 112 

Definition of Outcomes 113 

Diagnostic labels for each echo were derived from the Fyler coding system—a detailed, decades-114 

old, well-established anatomic classification system used at BCH and specifically designed for 115 

CHD.21 For every echo, expert interpreting cardiac imagers (with sub-specialty training in non-116 

invasive pediatric cardiac imaging) assign Fyler codes that capture both major and minor 117 

structural cardiac lesions with high anatomic granularity.  118 
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Outcomes of interest included critical and non-critical CHD lesions, predicted 119 

individually and as composites (Table S1). The composite critical CHD outcome was the 120 

primary endpoint. Outcome labels were not mutually exclusive (i.e., a patient can have tetralogy 121 

of Fallot and an atrial septal defect). 122 

 CHD lesions were considered as critical if surgical or catheter-based intervention is 123 

typically required within the first year of life. The 12 individual critical CHD lesions predicted 124 

were double outlet right ventricle, D-loop transposition of the great arteries, Ebstein anomaly, 125 

hypoplastic left heart syndrome, tricuspid atresia, truncus arteriosus, any functional single 126 

ventricle lesions (broadly defined as “single ventricle”, “single left ventricle”, or “single right 127 

ventricle”), tetralogy of Fallot, atrioventricular canal defect, coarctation of the aorta, pulmonary 128 

atresia, and totally anomalous pulmonary venous connection. The composite critical CHD 129 

outcome indicates the presence of any of these individual lesions, in addition to anomalous left 130 

coronary artery from the pulmonary artery, aortopulmonary window, double-outlet left ventricle, 131 

interrupted aortic arch, critical aortic stenosis, and critical pulmonary stenosis (Table S1). These 132 

additional lesions were not predicted individually due to insufficient positive samples. 133 

 A CHD lesion was considered non-critical if it is typically managed conservatively or 134 

with intervention delayed beyond infancy. The 8 non-critical CHD lesions predicted were atrial 135 

septal defect, anomalies of coronary artery origins, bicuspid aortic valve, left superior vena cava, 136 

partially anomalous pulmonary venous connection, ductus arteriosus, right aortic arch, and 137 

ventricular septal defect. The composite non-critical CHD outcome indicates the presence of any 138 

of these individual lesions, in addition to the following less common non-critical lesions that 139 

were not predicted individually: cor triatriatum, double aortic arch, [I,D,D] transposition of the 140 
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great arteries, left pulmonary artery sling, [S,L,L] transposition of the great arteries, and vascular 141 

ring.  142 

Data Retrieval, Pre-Processing, and Quality Control  143 

All echocardiographic studies were retrieved from the institutional picture archiving and 144 

communication system (PACS). All echos underwent pre-processing analogous to that described 145 

in the PanEcho framework.9 146 

 Pixel data from two-dimensional echo videos were first extracted from DICOM files. All 147 

videos then underwent comprehensive deidentification. Specifically, each frame was binarized 148 

using a fixed threshold, and all pixels outside the convex hull of the largest detected contour 149 

were masked. Videos were subsequently cropped to the central image content in a temporally 150 

consistent manner, downsampled to a resolution of 256 x 256 pixels using bicubic interpolation, 151 

and further deidentified by masking peripheral regions containing protected health information.9 152 

EchoFocus-CHD Model Architecture 153 

The EchoFocus-CHD architecture takes a set of echo videos from a single study as input and 154 

produces multiple task-specific predictions of CHD classifications. The architecture extends 155 

PanEcho9 by adapting the final layers of the network with additional transformer layers to allow 156 

attention22 to operate over video clip embeddings (Figure 1B). Analogous to how a human expert 157 

interprets an echo, the attention mechanism enables the model to selectively weight 158 

diagnostically informative videos, enhancing the representation of relevant structural and 159 

functional features for CHD classification. 160 

Echo videos are first separated into 16 random sets of 16 sequential frames (called clips); 161 

each frame (image) is individually processed with a 2D convolutional neural network 162 

(ConvNeXt-T,23 pretrained on ImageNet) to produce image embeddings. These image 163 
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embeddings are stacked sequentially and fed into a temporal transformer, consisting of 4 layers 164 

with 8 attention heads. This process mimics the use of transformers for interpreting natural 165 

language sentences; in this setting, the image embeddings are like word “tokens”, and the clips 166 

are treated as “sentences”. To capture the temporal information of the frames, a standard 167 

positional encoding is added to the image tokens. For each clip in the echo study, the output of 168 

the temporal transformer is aggregated using mean pooling to produce a clip-level embedding, 169 

represented as a 768-dimensional vector.  170 

EchoFocus-CHD then departs from the PanEcho architecture9 by introducing a study-171 

level transformer encoder that operates across all (number of videos x 16) clip-level embeddings 172 

to generate a single study-level embedding. This transformer encoder leverages self-attention to 173 

learn additional dependencies between videos in the study before moving to task prediction. The 174 

resulting study-level embedding is then passed through fully connected layers to generate task-175 

specific outputs of CHD classification labels.  176 

Model Training 177 

The internal BCH cohort designated for model development was randomly partitioned into 178 

training (80%) and validation (20%) sets. The model was trained using the training set, with the 179 

validation set used exclusively for model selection. During training, pretrained PanEcho model 180 

weights were frozen and used to generate video-level embeddings, allowing optimization to 181 

focus on learning the parameters of the study-level transformer encoder and the fully connected, 182 

task-specific output layers. 183 

Training was performed using the AdamW optimizer24 with a weight decay of 0.01 and a 184 

scheduled learning rate that decreased upon plateaus in validation loss. Training was terminated 185 

after 10 consecutive epochs without improvement in validation loss.  186 
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Several strategies were employed to improve training robustness. Consistent with the 187 

PanEcho approach,9 we utilized several image augmentation techniques (cropping, rotation, and 188 

flipping), to improve robustness to imaging noise. On layers following PanEcho, dropout25 was 189 

applied during training at a rate of 0.2 with an additional clip-level dropout at 0.5 to enhance 190 

robustness to missing video clips. 191 

For hyperparameter tuning, we varied the depth of the study-level transformer encoder (1, 192 

5, 10, and 20 layers), the learning rate (0.0001-0.01), and the effective batch size (32-128). The 193 

final model was selected by minimizing loss across tasks on the held-out validation set. 194 

Model Performance Evaluation and Statistical Analyses 195 

Model discrimination was assessed using the area under the receiver operating characteristic 196 

curve (AUROC). Additional clinically relevant performance metrics included sensitivity, 197 

specificity, positive and negative predictive values, positive and negative likelihood ratios (LRs), 198 

and lift. These metrics were computed using decision thresholds that maximize the Youden 199 

index, derived from the validation set. Confidence intervals for performance metrics were 200 

estimated using 1,000 bootstrap samples. 201 

 Descriptive data are presented as frequencies and percentages for categorical variables 202 

and median and interquartile range (IQR) for continuous variables.  203 

Model Calibration Analysis 204 

Model calibration was assessed via calibration plots and scaled Brier scores. Scaled Brier scores 205 

measure the mean squared difference between predicted probabilities and observed outcomes, 206 

scaled relative to the score of a non-informative model predicting the cohort’s outcome 207 

prevalence. This scaling accounts for differences in outcome prevalence across cohorts and 208 
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provides an interpretable metric ranging from 0 (no improvement over baseline) to 1 (perfect 209 

prediction).  210 

Sensitivity and Subgroup Analyses 211 

We evaluated the model’s robustness for detecting exclusively unrepaired CHD through a 212 

sensitivity analysis that excluded echos from patients with prior cardiac interventions (i.e., 213 

catheterization or surgery), as determined by Fyler codes. To assess sensitivity to outcome 214 

labeling, we compared model performance when using structured Fyler code labels versus labels 215 

automatically extracted from echo report text by an internal instance of GPT-4o-mini (OpenAI, 216 

San Francisco, CA). 217 

Subgroup analyses were performed on the test cohorts stratified by age and number of 218 

echo videos per study. Age groupings were adapted from prior work26 and defined as age < 1 219 

(infant), 1-3, 3-8, 8-12, 12-18 years, and age >18 years. Echo videos per study groupings were 220 

defined as <25, 26-50, 51-75, 76-100, and >100. Model discrimination within each age subgroup 221 

was assessed using AUROC. 222 

Model Adjudication 223 

Four expert cardiac imagers characterized model errors through an adjudication process: for both 224 

internal and external studies, 2 experts each independently reviewed 25 random false positive 225 

and 25 random false negative infant echos. Adjudicators reviewed the full echo study and were 226 

blinded to patient name, echo report, model predictions, and to each other’s assessments. For 227 

each echo, adjudicators were asked to classify the study into one of 4 categories: 1) critical CHD; 228 

2) non-critical CHD; 3) indeterminate (due to inadequate image quality); or 4) indeterminate 229 

(due to evolving physiology requiring follow-up, such as suspected coarctation of the aorta in the 230 
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presence of a ductus arteriosus). Adjudication outcomes between internal and external cohorts 231 

were compared using the Fisher’s exact test. 232 

For the purposes of evaluating agreement in a triage context, we calculated Cohen’s 233 

kappa (k) when grouping indeterminate studies with non-critical studies to yield a binary critical 234 

versus non-critical/indeterminate classification. A Cohen’s k value of 1 indicates perfect 235 

agreement, 0 indicates agreement equivalent to chance, and values less than 0 indicate agreement 236 

worse than chance.  237 

Model Explainability 238 

To interpret model predictions, an integrated gradients-based explainability analysis was 239 

performed for one left-sided lesion (hypoplastic left heart syndrome) and one right-sided lesion 240 

(tetralogy of Fallot). For each lesion, we selected 25 internal and 25 external echo studies with 241 

positive cases and the smallest prediction errors. For each echo study, integrated gradients were 242 

applied to quantify the contribution of individual video clips to the model’s predicted output.  243 

The 10 most highly weighted video clips per study were identified and subsequently 244 

reviewed by an expert cardiac imager, who recorded: 1) which unique echo views the model 245 

prioritized; 2) whether the 5 or 10 highest prioritized video clips were sufficient to detect the 246 

lesion of interest. 247 

Embedding Visualization for Domain Shift Assessment 248 

To explore potential domain shift27 (i.e., differences in training versus deployment echo imaging 249 

conditions that can degrade performance) between internal and external echo studies, we applied 250 

unsupervised Uniform Manifold Approximation and Projection (UMAP) on high-dimensional 251 

embeddings produced by the EchoFocus-CHD study-level transformer encoder. We applied 252 

UMAP using 15 neighbors and the cosine distance metric. The resulting space was visualized 253 
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and qualitatively compared between internal and external cohorts to assess overlap and 254 

separation that might indicate domain shift related to differences in acquisition setting, patient 255 

population, or imaging protocols. 256 

Data Availability and Software 257 

The model and source code are available from https://echofocus.org for non-commercial, 258 

academic-only purposes to accelerate research on AI-echo in pediatric cardiology. Requests for 259 

BCH data and related materials will be internally reviewed to clarify if the request is subject to 260 

intellectual property or confidentiality constraints. Shareable data and materials will be released 261 

under a material transfer agreement for non-commercial research purposes. Use of BCH data was 262 

approved by its Institutional Review Board.  263 
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RESULTS 264 

Patient Population Characteristics 265 

From the 234,807 transthoracic echos at Boston Children’s Hospital meeting inclusion 266 

criteria, 60,683 were first time studies per patient. After excluding echos with <10 DICOM files 267 

per study (n=2,600), there were 58,083 studies remaining, forming the main cohort (Figure 1A). 268 

Of those, 54,727 were internal studies and 3,356 studies were sent from outside centers: 2,365 269 

from patients across the US, and 991 from international patients. International patients resided in 270 

58 countries spanning 6 continents: North America, South America, Europe, Asia, Africa, and 271 

Australia. 272 

As shown in Table 1, there were numerous differences between the internal and external 273 

cohorts. There were 2.6 million, 0.8 million, and 0.2 million videos within the internal 274 

development, internal testing, and outside cohorts, respectively (Table 1). The internal studies 275 

had more videos per study (median 75) compared to outside studies (median 46). Internal studies 276 

were performed at an older age (median age at echo 7.1 [IQR, 0.2-15.0] years) compared to 277 

external studies (median age at echo 2.5 [IQR, 0.3-9.4] years). There was a substantially higher 278 

prevalence of CHD in the external cohort (29.4% critical CHD; 45.6% non-critical CHD) 279 

compared to the internal cohort (5.8% critical CHD; 23.6% non-critical CHD). For details of 280 

prevalence for individual lesions within each cohort, see Table 1.  281 

EchoFocus-CHD Model Performance 282 

Model performance metrics of EchoFocus-CHD for individual critical CHD lesions during 283 

internal and external testing are shown in Figure 2 and Tables S1-S4. During internal testing, 284 

performance was excellent for a majority of lesions: AUROC 0.97 for Ebstein anomaly; AUROC 285 

≥0.99 for single ventricle lesions such as hypoplastic left heart syndrome, tricuspid atresia, and 286 
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any single ventricle lesion; AUROC ≥0.97 for conotruncal lesions such as double outlet right 287 

ventricle, D-loop transposition of the great arteries, truncus arteriosus, and tetralogy of Fallot; 288 

AUROC 0.96 for atrioventricular canal defects and pulmonary atresia; AUROC 0.90 for 289 

coarctation of the aorta; and AUROC 0.83 for total anomalous pulmonary venous connection. In 290 

comparison, there was a reduction in performance for the overall external cohort across all 291 

individual critical CHD lesions, with AUROC ranging from 0.70-0.85 (Figure 2). 292 

 For individual non-critical CHD lesions, internal performance ranged from AUROC 0.70 293 

(anomalous coronaries) to 0.96 (ductus arteriosus). For atrial and ventricular septal wall defects, 294 

AUROC was 0.87 and 0.91, respectively (Table S2). Externally, performance also declined for 295 

non-critical CHD lesions. For example, external AUROC decreased to 0.80 for patent ductus 296 

arteriosus, 0.74 for atrial septal defect, and 0.72 for ventricular septal defect. Tables S2-S5 list 297 

performance metrics for individual non-critical CHD lesions. 298 

 When assessing the composite critical CHD outcome (Figure 3), internal performance 299 

was excellent in both the overall internal cohort (AUROC 0.94) and the infant subgroup 300 

(AUROC 0.93). In contrast, performance was lower in the external cohort (AUROC 0.77 for all 301 

external studies, 0.74 for US external studies, and 0.82 for international external studies), which 302 

further declined for the infant cohort (AUROC 0.71 for all external studies, 0.68 for US external 303 

studies, and 0.73 for international external studies). Calibration analysis (Figure S1) showed a 304 

moderate scaled Brier score of 0.405 for the internal cohort, whereas the external cohorts 305 

exhibited poor calibration, with scaled Brier scores of 0.045 for the overall external cohort, 0.005 306 

for the external US cohort, and 0.067 for the external international cohort.  307 

Subgroup and Sensitivity Analyses 308 
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During sensitivity analysis, model performance to detect the composite critical CHD outcome 309 

was unchanged when excluding echos with prior cardiac interventions (internal AUROC 0.94 310 

[95% CI, 0.93-0.95]; external AUROC 0.74 [95% CI, 0.72-0.76]). In addition, using labels 311 

generated by a large language model from echo report free text did not alter model performance 312 

(Table S6).  313 

Subgroup analyses by study size demonstrated lower performance for critical CHD 314 

detection in studies with fewer than 25 videos (Table S7), whereas no consistent performance 315 

trends were observed across age subgroups (Table S8). 316 

Expert Adjudication 317 

Expert adjudication was performed on 50 internal and 50 external discrepant test cases for both 318 

false negatives and false positives. For false negatives, adjudicators determined that 42% of 319 

internal cases were in fact negative, compared with 12% of external cases (Figure 4A). For false 320 

positives, adjudicators determined that 10% of internal cases were indeed positive, compared 321 

with 20% of external cases. The distributions of adjudication outcomes differed significantly 322 

between internal and external cohorts for both false negatives (p<0.001) and false positives 323 

(p=0.01). Inter-rater agreement was high internally (Cohen’s k=0.82) with a drop to k=0.72 324 

externally, suggesting greater diagnostic ambiguity in the external cohort. 325 

Model Explainability Analysis 326 

Across both internal and external test cohorts, model explainability consistently prioritized the 327 

same views to detect hypoplastic left heart syndrome and tetralogy of Fallot: parasternal long-328 

axis, parasternal short-axis, and subxiphoid long-axis views (Figure 5A). In the majority of 329 

studies (range of 76-100%), the top 5 and top 10 attention-weighted clips were sufficient for an 330 

expert cardiac imager to determine the presence or absence of critical CHD (Figure 5B). There 331 
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was no significant difference between internal and external cohorts in the ability to identify 332 

critical CHD from these clips. 333 

Exploring and Addressing Domain Shift 334 

To explore whether domain shift contributed to lower external performance, we visualized study-335 

level embeddings using UMAP. As shown in Figure S2A, internal studies formed several dense 336 

clusters, which only partially overlapped with the external clusters. Notably, some external 337 

studies occupied regions of the embedding space that were sparsely populated by internal 338 

studies, suggesting the presence of domain shift. This is particularly evident in the bottom right 339 

quadrant, where there was a high density of external critical CHD (Figure S2B). 340 

To address domain shift, we retrained EchoFocus-CHD using an expanded model 341 

development cohort that incorporated all US external studies in addition to the original BCH 342 

training set. The BCH test cohort and the external international cohort were excluded from 343 

training. As shown in Figure 6, internal model performance for the composite critical CHD 344 

outcome remained excellent and largely unchanged across the overall cohort, infants, and 345 

individual critical CHD lesions (Table S9). Internal calibration was also unchanged (Figure S3). 346 

In the external international cohort, performance for the composite critical CHD outcome 347 

improved with AUROCs of 0.87 for the overall cohort and 0.84 for infants (Figure 6). External 348 

calibration also improved to 0.151 (Figure S3). For 10 of 12 individual critical CHD lesions, 349 

AUROC increased by a median of 0.08.  350 

Across the retrained internal versus external cohorts, sensitivity was similar (86-88%), 351 

while specificity was lower in the external international cohort (72% versus 89%). The negative 352 

LR was comparable between cohorts (0.13-0.19), whereas the positive LR was higher in the 353 

internal cohort (7.8 vs. 3.2). Across internal and external cohorts, positive predictive values were 354 
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33% [95% CI, 32-34%] and 35% [95% CI, 30-41%], respectively; negative predictive values 355 

were 99% [95% CI, 99-99%] and 97% [95% CI, 96-98%], respectively. Full external 356 

international performance metrics are provided in Table S10.   357 
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DISCUSSION 358 

In this study, we developed a view-agnostic, multi-task AI-echo model for automated detection 359 

of a broad spectrum of CHD lesions. The model introduces a novel study-level transformer 360 

encoder as an extension of the PanEcho9 framework, enabling integration of information across 361 

multiple video clips in a manner analogous to how cardiologists synthesize findings across 362 

views, highlighting both the architectural innovation and clinical plausibility of this approach. 363 

Using the largest pediatric echo dataset reported to date, we demonstrate excellent internal 364 

discrimination for both composite and individual CHD outcomes. We further evaluate the 365 

model’s external generalizability across a large, geographically diverse external referral cohort, 366 

identifying performance degradation partly attributable to domain shift and demonstrating that 367 

discrimination and calibration can be improved through retraining with more heterogeneous data. 368 

Expert adjudication revealed lower inter-rater agreement externally among pediatric 369 

cardiologists, suggesting that external cases missed by the model may represent diagnostically 370 

challenging studies rather than unequivocal errors. Altogether, EchoFocus-CHD illustrates the 371 

potential of AI-echo to function as a clinical decision-support tool, prioritizing and triaging 372 

studies in resource-limited settings to optimize timely access to scarce pediatric cardiology and 373 

congenital surgery expertise, rather than serving as a replacement for clinician interpretation. 374 

Global Disparities in Pediatric Cardiology Care 375 

There is an underrecognized global burden of pediatric heart disease,28 with CHD constituting a 376 

leading cause of childhood non-communicable mortality worldwide.1 It is estimated that more 377 

than 90% of children born with CHD reside in LMICs, which together account for 94% of global 378 

CHD-related mortality.28,29 Even in more developed nations, CHD related mortality is higher in 379 

rural and more resource-constrained regions.30 Reducing these inequities is therefore central to 380 
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achieving the United Nations’ Sustainable Development Goals targeting reductions in neonatal 381 

and under-five mortality by 2030.31  382 

Despite this urgency, many pediatric cardiac care systems remain fragile, driven in large 383 

part by critical shortages of clinicians with specialized expertise in the diagnosis and 384 

management of pediatric heart disease.28 For example, most countries in sub-Saharan Africa and 385 

many in Asia lack structured training programs in pediatric cardiology and congenital cardiac 386 

surgery31 and facilities capable of performing infant or neonatal cardiac surgery.32 Existing 387 

models of pediatric heart care in high-income countries are unfeasible for LMICs, requiring 388 

alternative and context-appropriate strategies to facilitate timely referral to specialized centers. 389 

Similar challenges and proposed solutions have been described in rural and underserved regions 390 

of high-income countries such as the US. 391 

Within this framework, EchoFocus-CHD was developed as an initial step toward 392 

enabling scalable, technology-assisted CHD screening and prioritization, with the goal of 393 

extending limited pediatric cardiology expertise to settings where it is most constrained. 394 

Clinical Implications of EchoFocus-CHD 395 

EchoFocus-CHD is intended to function as a triage and decision-support tool in resource-396 

constrained settings, where access to pediatric cardiology expertise is limited and timely 397 

prioritization of high-risk patients is critical. In this context, the model’s operating characteristics 398 

support clinically meaningful risk stratification. Internally, EchoFocus-CHD demonstrated high 399 

sensitivity and specificity (both ~90%), corresponding to strong positive and negative LRs (7.8 400 

and 0.13, respectively; Table S9). Externally, sensitivity remained high (0.86) with moderate 401 

specificity (0.72), yielding a preserved negative LR of 0.13 and a positive LR of 3.2 (Table S10). 402 

These findings indicate that the model is particularly effective for ruling out critical CHD (with 403 
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negative predictive values of 97-99% across cohorts), a key requirement for triage applications in 404 

which false negatives carry substantial clinical risk.	In addition, approximately one-third of cases 405 

flagged as positive by EchoFocus-CHD were confirmed to be critical CHD (i.e., positive 406 

predictive value of 33-35% across cohorts). 407 

Notably, the performance metrics likely underestimate true clinical accuracy, as 408 

adjudication identified a subset of cases initially labeled as incorrect that were either correct, 409 

evolving physiology (e.g., suspected coarctation of the aorta in the setting of a patent ductus 410 

arteriosus), diagnostically ambiguous, or challenging even for expert readers. Importantly, 411 

EchoFocus-CHD demonstrated good internal calibration, with improved calibration in the 412 

retrained external international cohort. In low-resource environments where downstream 413 

resources such as specialist consultation, transport, or advanced imaging are limited, well-414 

calibrated risk estimates may allow for rational prioritization rather than reliance on binary 415 

classification alone. Beyond binary triage, EchoFocus-CHD provides lesion-specific subtype 416 

predictions, which may further inform urgency, anticipated clinical course, and referral 417 

pathways.  418 

Importance of Real-World Deployment 419 

A central objective of this study was to evaluate model performance in a large, diverse cohort 420 

that was geographically and demographically distinct from the training population, reflecting 421 

conditions expected during real-world deployment. Model performance declined in the external 422 

cohort (Figure 3), independent of outcome labeling approach (i.e., Fyler versus large language 423 

model), number of videos per study, or differences in patient age. While top selected views were 424 

consistent across cohorts (Figure 5A) and clinically relevant (Figure 5B), there were discernable 425 

differences in the model representations between internal and external datasets (Figure S2). 426 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted January 26, 2026. ; https://doi.org/10.64898/2026.01.24.26344771doi: medRxiv preprint 

https://doi.org/10.64898/2026.01.24.26344771
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

Domain shift—the phenomenon where a model’s performance degrades when applied to data 427 

that differ from its training set—is anticipated in pediatric echo, a modality characterized by 428 

substantial variability in vendor-specific image processing, operator-dependent acquisition 429 

techniques, image quality, and institution-specific protocols. These factors introduce meaningful 430 

heterogeneity that must be carefully considered as AI-based echo tools move toward clinical 431 

deployment. 432 

To help disentangle two plausible sources of domain shift in this study (underlying 433 

patient population versus echo acquisition), we incorporated external US referral echos into the 434 

training set. The observed improvement in external international performance following this 435 

retraining step suggests that a component of the generalization gap is attributable to differences 436 

in image acquisition/processing rather than solely to population-level differences. This finding 437 

highlights the importance of dataset heterogeneity, particularly with respect to imaging practices, 438 

for improving model robustness. 439 

Limitations and Future Directions 440 

Several limitations merit consideration. First, despite retraining on a more heterogeneous US 441 

cohort, performance on the external international cohort remains below the threshold for safe 442 

clinical deployment. This highlights the ongoing need to improve model generalizability, which 443 

could be addressed through strategies such as: 1) exploring alternative/hybrid architectures (e.g., 444 

EchoPrime)14 or learning approaches (e.g., adversarial learning33); 2) developing a pediatric and 445 

CHD-specific foundation model to generate a more robust embedding space; 3) leveraging multi-446 

institutional or federated learning approaches to incorporate data from both large and small 447 

centers;34 and 4) multi-modal approaches,35 such as integrated AI-enabled ECG.36-38 Second, 448 

although model performance was comparable when using either Fyler-coded labels or large 449 
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language model-extracted labels from echo reports, both approaches are imperfect. Fyler codes 450 

are highly granular but may be affected by human documentation limitations, while large 451 

language model-extracted labels are prone to misinterpretation of report text. Consequently, 452 

labeling errors may persist. Third, although our external validation set was geographically 453 

diverse, certain regions of particular clinical interest (most notably sub-Saharan Africa) were not 454 

represented, potentially limiting the generalizability of findings to areas with the greatest unmet 455 

need. Fourth, our models rely on transthoracic echos acquired by trained sonographers; 456 

translation to low-resource or point-of-care settings will require validation on portable ultrasound 457 

studies, which may have lower image quality and greater operator variability. Fifth, while the 458 

model encompasses a broad spectrum of lesions, it does not provide predictions for all pediatric 459 

heart conditions (e.g., Kawasaki disease, rheumatic heart disease, cardiomyopathy). Finally, 460 

while integrated gradients-based explainability was performed, further work is needed to 461 

evaluate how these visualizations impact clinician trust and decision-making in practice. 462 

 Future directions should include continued model refinement for low-resource settings, 463 

prospective multi-site evaluation in diverse healthcare environments, and formal assessment of 464 

clinical utility and workflow integration.  465 

Conclusions 466 

EchoFocus-CHD demonstrates that large-scale, multi-task AI models show promise to detect a 467 

wide range of CHD lesions from routine echo. At the same time, our findings highlight the 468 

critical importance of external validation, calibration assessment, and domain shift mitigation for 469 

real-world implementation. By identifying both strengths and limitations, this work provides a 470 

foundation for future prospective studies and iterative deployment strategies to advance 471 

equitable, scalable CHD care worldwide. 472 
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TABLES 615 
Table 1: Baseline Characteristics of Internal and External Cohorts 616 

 Internal Cohort Outside Studies 

 Development Testing 
External  

(US) 
External  

(International) 
External 

(Combined) 
Patients 43782 10945 2365 991 3356 
TTEs 43782 10945 2365 991 3356 

Videos 2617348 818487 119152 48332 167484 
Videos Per Study 75 (63, 87) 75 (63, 88) 45 (31, 65) 47 (30, 65) 46 (31, 65) 

Age at TTE 7.11 (0.25,14.96) 6.96 (0.20,14.99) 2.17 (0.34,8.96) 3.3 (0.33,10.40) 2.46 (0.33,9.36) 
Sex (Male) 23291 (53.20%) 5752 (52.55%) 1295 (54.76%) 529 (53.38%) 1824 (54.35%) 

      
Composite  

Critical CHD 2525 (5.77%) 628 (5.74%) 810 (34.25%) 177 (17.86%) 987 (29.41%) 

ALCAPA 7 (0.02%) 2 (0.02%) 3 (0.13%) 0 (0.00%) 3 (0.09%) 
AP window 13 (0.03%) 5 (0.05%) 7 (0.30%) 0 (0.00%) 7 (0.21%) 

DORV 163 (0.37%) 35 (0.32%) 116 (4.90%) 30 (3.03%) 146 (4.35%) 
D-loop TGA 235 (0.54%) 62 (0.57%) 55 (2.33%) 17 (1.72%) 72 (2.15%) 

Ebstein 83 (0.19%) 25 (0.23%) 54 (2.28%) 17 (1.72%) 71 (2.12%) 
HLHS 194 (0.44%) 42 (0.38%) 70 (2.96%) 24 (2.42%) 94 (2.80%) 
IAA 33 (0.08%) 16 (0.15%) 10 (0.42%) 2 (0.20%) 12 (0.36%) 

Tricuspid Atresia 82 (0.19%) 13 (0.12%) 11 (0.47%) 7 (0.71%) 18 (0.54%) 
Truncus Arteriosus 48 (0.11%) 13 (0.12%) 17 (0.72%) 4 (0.40%) 21 (0.63%) 

SV Disease 330 (0.75%) 70 (0.64%) 113 (4.78%) 41 (4.14%) 154 (4.59%) 
Tetralogy of Fallot 515 (1.18%) 104 (0.95%) 86 (3.64%) 16 (1.61%) 102 (3.04%) 

AVCD 406 (0.93%) 109 (1.00%) 254 (10.74%) 35 (3.53%) 289 (8.61%) 
CoA 806 (1.84%) 203 (1.85%) 131 (5.54%) 21 (2.12%) 152 (4.53%) 

TAPVC 71 (0.16%) 13 (0.12%) 20 (0.85%) 8 (0.81%) 28 (0.83%) 
Critical AS 10 (0.02%) 2 (0.02%) 4 (0.17%) 1 (0.10%) 5 (0.15%) 
Critical PS 26 (0.06%) 8 (0.07%) 2 (0.08%) 0 (0.00%) 2 (0.06%) 

Pulmonary Atresia 244 (0.56%) 55 (0.50%) 85 (3.59%) 26 (2.62%) 111 (3.31%) 
      

Composite  
Non-Critical CHD 10277 (23.47%) 2619 (23.93%) 1232 (52.09%) 298 (30.07%) 1530 (45.59%) 

ASD 3037 (6.94%) 771 (7.04%) 441 (18.65%) 95 (9.59%) 536 (15.97%) 
Anomalous Coronaries 302 (0.69%) 69 (0.63%) 49 (2.07%) 6 (0.61%) 55 (1.64%) 

BAV 1212 (2.77%) 287 (2.62%) 212 (8.96%) 35 (3.53%) 247 (7.36%) 
Cor Triatriatum 23 (0.05%) 4 (0.04%) 5 (0.21%) 1 (0.10%) 6 (0.18%) 

Double Aortic Arch 82 (0.19%) 17 (0.16%) 10 (0.42%) 0 (0.00%) 10 (0.30%) 
Left PA sling 15 (0.03%) 3 (0.03%) 4 (0.17%) 1 (0.10%) 5 (0.15%) 

LSVC 574 (1.31%) 141 (1.29%) 85 (3.59%) 13 (1.31%) 98 (2.92%) 
L-loop TGA 61 (0.14%) 19 (0.17%) 68 (2.88%) 27 (2.72%) 95 (2.83%) 

PAPVC 266 (0.61%) 63 (0.58%) 40 (1.69%) 10 (1.01%) 50 (1.49%) 
PDA 4521 (10.33%) 1238 (11.31%) 198 (8.37%) 94 (9.49%) 292 (8.70%) 

Right Aortic Arch 478 (1.09%) 103 (0.94%) 67 (2.83%) 9 (0.91%) 76 (2.26%) 
Vascular Ring 125 (0.29%) 31 (0.28%) 14 (0.59%) 0 (0.00%) 14 (0.42%) 

VSD 3177 (7.26%) 794 (7.25%) 461 (19.49%) 95 (9.59%) 556 (16.57%) 
Data presented as frequence (percentage) and median (interquartile range). 617 

Abbreviations: anomalous left coronary artery from the pulmonary artery (ALCAPA); aortopulmonary (AP); 618 
bicuspid aortic valve (BAV); double outlet right ventricle (DORV); transposition of the great arteries (TGA); 619 

hypoplastic left heart syndrome (HLHS); interrupted aortic arch (IAA); left superior vena cava (LSVC); partial 620 
anomalous pulmonary venous connection (PAPVC); patent ductus arteriosus (PDA); single ventricle (SV); 621 
atrioventricular canal defect (AVCD); ventricular septal defect (VSD); coarctation of the aorta (CoA); total 622 

anomalous pulmonary venous connection (TAPVC); aortic/pulmonary stenosis (AS/PS). 623 
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FIGURES 624 
 625 

 626 
Figure 1: Schematic of Study Design and Model Architecture. (A) Schematic of training and 627 

testing design. STROBE diagram showing initial patient selection and filtering at each data 628 
processing stage (with primary outcome rates shown). Pins of origin countries for outside 629 
patients inset. (B) Schematic of EchoFocus-CHD architecture and classification targets. 630 

Abbreviations: transthoracic echo (TTE).  631 
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 632 
Figure 2: EchoFocus-CHD Performance to Predict Individual Critical CHD Lesions. 633 

Performance of EchoFocus-CHD to predict individual critical CHD lesions evaluated using the 634 
internal (blue) and overall external (orange) test cohorts using receiver operating curves. Dotted 635 

line represents chance. 95% confidence intervals are computed using bootstrapping.  636 
Abbreviations: true positive rate (TPR); false positive rate (FPR); double outlet right ventricle 637 
(DORV); transposition of the great arteries (TGA); hypoplastic left heart syndrome (HLHS); 638 

tetralogy of Fallot (TOF); atrioventricular canal defect (AVCD); coarctation of the aorta (CoA); 639 
total anomalous pulmonary venous connection (TAPVC).  640 
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 641 
Figure 3: EchoFocus-CHD Performance to Predict the Composite Critical CHD Outcome. 642 
Performance of EchoFocus-CHD to predict the composite critical CHD outcome evaluated in the 643 

overall cohort (left) and infant subgroup (right) using the internal (blue), overall external 644 
(orange), external US (green), and external international (red) cohorts using receiver operating 645 

curves. Dotted line represents chance. 95% confidence intervals are shown using bootstrapping.  646 
Abbreviations: true positive rate (TPR); false positive rate (FPR); United States (US). 647 

  648 
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  649 
Figure 4. Expert Adjudication of Discrepant Cases. Expert adjudication was performed on 50 650 

internal and 50 external discrepant test cases. (A) Stacked bar plot showing the proportion of 651 
cases classified as no critical CHD (blue), critical CHD (amber), indeterminate due to poor 652 

image quality (gray), and indeterminate due to evolving physiology requiring follow-up 653 
(yellow). P-value obtained via Fisher’s exact test. (B) Heatmap displaying study-level 654 

classifications assigned by each expert adjudicator; inter-rater agreement, assessed using 655 
Cohen’s k, is inset. Abbreviations: congenital heart disease (CHD); false negative (FN); false 656 

positive (FP). 657 
  658 
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 659 
Figure 5. Expert Review of EchoFocus-CHD Model Attention for Diagnosing Critical 660 

CHD. (A) Radar plots of selected views in top 10 clips for hypoplastic left heart syndrome (left) 661 
and tetralogy of Fallot (right) for internal (blue) and external (red) studies. (B) Diagnostic 662 

accuracy of top EchoFocus-CHD selected clips. Stacked bar plots show the proportion of studies 663 
in which an expert imager could identify hypoplastic left heart syndrome (left) and tetralogy of 664 

Fallot (right) from the top 5 and top 10 clips selected by the model. P-values obtained via 665 
Fisher’s exact test. Abbreviations: pulmonary artery (PA).  666 
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 667 
Figure 6: Retraining EchoFocus-CHD on Broader Dataset Improves Performance to 668 

Predict Critical CHD. Performance of retrained EchoFocus-CHD model to predict (A) the 669 
composite critical CHD outcome and (B) individual critical CHD outcomes on the internal (blue) 670 

and external international (red) cohorts using receiver operating curves. Dotted line represents 671 
chance. 95% confidence intervals are computed using bootstrapping.  672 

Abbreviations: true positive rate (TPR); false positive rate (FPR); double outlet right ventricle 673 
(DORV); transposition of the great arteries (TGA); hypoplastic left heart syndrome (HLHS); 674 

tetralogy of Fallot (TOF); atrioventricular canal defect (AVCD); coarctation of the aorta (CoA); 675 
total anomalous pulmonary venous connection (TAPVC). 676 
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