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ABSTRACT

Background: Delayed or missed diagnosis of congenital heart disease (CHD) contributes to
excess pediatric mortality worldwide. Echocardiography (echo) is central to diagnosing and
triaging CHD, yet expert interpretation remains a scarce and maldistributed global resource.
Artificial intelligence (Al) offers the potential to democratize diagnostics and extend expert-level
interpretation beyond large academic centers, but its application in CHD remains underexplored.
Methods: We developed EchoFocus-CHD, an Al-enabled model for automated detection of 12
critical and 8 non-critical CHD lesions, individually and as composites. The composite critical
CHD outcome was the primary endpoint. The model expands on a multi-task, view-agnostic
architecture (PanEcho) with a transformer encoder to improve focus on relevant echo views. The
model was trained (80%) and tested (20%) on the first echo per patient from Boston Children’s
Hospital (BCH), with external validation on US and international studies from patients referred
to BCH.

Results: The internal and external cohorts included 3.4 million videos from 54,727 echos
(median age at echo 7.1 [IQR, 0.2-15.0] years; 5.8% critical CHD; 23.6% non-critical CHD) and
167,484 videos from 3,356 echos (median age at echo 2.5 [IQR, 0.3-9.4] years; 29.4% critical
CHD; 45.6% non-critical CHD), respectively. EchoFocus-CHD showed excellent internal ability
to detect the composite critical CHD outcome (AUROC 0.94, LR+ 7.50, LR- 0.14) and
individual critical lesions (AUROC 0.83-1.00), as well as composite non-critical CHD (AUROC
0.90, LR+ 5.00, LR- 0.23) and individual non-critical lesions (AUROC 0.70-0.96). Performance
declined during external validation to detect critical CHD (AUROC 0.77), coinciding with
greater expert disagreement on external cases (k=0.72 versus 0.82 for internal cases).

Explainability analyses demonstrated that the model prioritized the same clinically relevant
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views (parasternal long-axis, parasternal short-axis, and subxiphoid long-axis) across internal
and external cohorts, while UMAP analysis revealed a domain shift between cohorts. Retraining
on all available US patients attenuated domain shift, improving international critical CHD
detection (AUROC 0.87) and calibration.

Conclusions: EchoFocus-CHD shows promise for automated CHD detection and highlights the
need to address domain shift for real-world deployment. By identifying high-risk CHD lesions,
this approach could support triage, prioritize expert review, and optimize resource allocation,
advancing more equitable global cardiovascular care.

Keywords: Artificial Intelligence; Pediatric Cardiology; Echocardiography; Congenital Heart

Disease
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Nonstandard Abbreviations and Acronyms:

Al: Artificial Intelligence

AUROC: Area under the Receiver Operating Curve
BCH: Boston Children’s Hospital

CHD: Congenital Heart Disease

Echo: Echocardiography

LMIC: Low- and Middle-Income Countries

LR: Likelihood Ratio

UMAP: Uniform Manifold Approximation and Projection


https://doi.org/10.64898/2026.01.24.26344771
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.64898/2026.01.24.26344771; this version posted January 26, 2026. The copyright holder for this preprint

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

&9

90

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

INTRODUCTION

Congenital heart disease (CHD) affects approximately 1 in 100 live births, impacting over 12
million individuals worldwide.!? Nearly 25% of CHD cases are critical, often requiring urgent
intervention in the neonatal period to prevent cardiovascular collapse and death.’ Unfortunately,
CHD is frequently diagnosed late in both low-resource* and high-resource’® countries, reflecting a
persistent diagnostic gap. This challenge is particularly severe in low- and middle-income
countries (LMICs) where the burden of disease is greatest® and access to diagnostics and
congenital care are limited,%’ highlighting the global imperative for timely and effective CHD
detection and triage.

Echocardiography (echo) is the cornerstone of pediatric cardiology and CHD diagnosis,
providing non-invasive, real-time assessment of cardiac anatomy and function without radiation.
Pediatric echo interpretation is technically challenging: it requires the interpretation of complex,
heterogeneous lesions in small hearts and is often complicated by motion artifacts and variable
image quality. These challenges are compounded by a global shortage of pediatric cardiologists
and specialized imaging experts,5® creating a critical bottleneck for timely and accurate
diagnoses.

Artificial intelligence (AI) has shown promise to address diagnostic gaps in adult echo.

9-12

For example, Al-echo models can reliably automate measurements,”' < assess heart muscle and

valve function,'3 or even provide a comprehensive echo evaluation.!* In contrast, transthoracic
Al-echo for pediatric cardiology remains nascent, with prior work largely limited to view

16,17

classification, !> isolated measurement tasks, or detection of specific findings (e.g., patent

ductus arteriosus)'® rather than comprehensive structural screening.!®
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To address this technological gap, we developed EchoFocus-CHD, a multi-task, view-
agnostic Al-echo model designed to automatically detect a broad spectrum of critical and
non-critical CHD lesions. To evaluate performance under real-world conditions and assess
generalizability, we externally validated the model using echos from 58 countries across 6
continents, with the goal of enabling scalable CHD triage and prioritization in resource-limited

settings.
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97 METHODS

98  This study is reported in accordance with the TRIPOD+AI 2024 guidelines.?’

99  Patient Population and Patient Assignment
100  Patient data and echos were obtained from Boston Children’s Hospital (BCH) between July 2015
101 and July 2025. Only transthoracic echos with >10 DICOM files were included in this study; fetal
102 echos and echos performed in the operating room were excluded. Echos that did not pass quality
103 control criteria (see “Data Retrieval, Pre-Processing, and Quality Control” below) were also
104  excluded. Given our objective to identify previously unknown or unverified CHD, only the first
105  echo per patient was included. These criteria defined the main study cohort.
106 The main cohort was subsequently partitioned into internal studies (performed at BCH,
107  Brigham and Women's Hospital nursery/NICU, Beth Israel nursery/NICU, or affiliated BCH
108  satellite clinics) and external studies (outside referral echos read by BCH expert cardiac imagers
109  for diagnostic assistance or second opinions). The external cohort was further subdivided into US
110  and international patients. International patients were defined as having non-US home addresses.
111 Within the internal cohort, patients were randomly assigned in an 80:20 ratio to development and
112 testing cohorts.
113 Definition of Outcomes
114  Diagnostic labels for each echo were derived from the Fyler coding system—a detailed, decades-
115  old, well-established anatomic classification system used at BCH and specifically designed for
116  CHD.?! For every echo, expert interpreting cardiac imagers (with sub-specialty training in non-
117  invasive pediatric cardiac imaging) assign Fyler codes that capture both major and minor

118  structural cardiac lesions with high anatomic granularity.
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Outcomes of interest included critical and non-critical CHD lesions, predicted
individually and as composites (Table S1). The composite critical CHD outcome was the
primary endpoint. Outcome labels were not mutually exclusive (i.e., a patient can have tetralogy
of Fallot and an atrial septal defect).

CHD lesions were considered as critical if surgical or catheter-based intervention is
typically required within the first year of life. The 12 individual critical CHD lesions predicted
were double outlet right ventricle, D-loop transposition of the great arteries, Ebstein anomaly,
hypoplastic left heart syndrome, tricuspid atresia, truncus arteriosus, any functional single
ventricle lesions (broadly defined as “single ventricle”, “single left ventricle”, or “single right
ventricle”), tetralogy of Fallot, atrioventricular canal defect, coarctation of the aorta, pulmonary
atresia, and totally anomalous pulmonary venous connection. The composite critical CHD
outcome indicates the presence of any of these individual lesions, in addition to anomalous left
coronary artery from the pulmonary artery, aortopulmonary window, double-outlet left ventricle,
interrupted aortic arch, critical aortic stenosis, and critical pulmonary stenosis (Table S1). These
additional lesions were not predicted individually due to insufficient positive samples.

A CHD lesion was considered non-critical if it is typically managed conservatively or
with intervention delayed beyond infancy. The 8 non-critical CHD lesions predicted were atrial
septal defect, anomalies of coronary artery origins, bicuspid aortic valve, left superior vena cava,
partially anomalous pulmonary venous connection, ductus arteriosus, right aortic arch, and
ventricular septal defect. The composite non-critical CHD outcome indicates the presence of any
of these individual lesions, in addition to the following less common non-critical lesions that

were not predicted individually: cor triatriatum, double aortic arch, [I,D,D] transposition of the
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great arteries, left pulmonary artery sling, [S,L,L] transposition of the great arteries, and vascular
ring.

Data Retrieval, Pre-Processing, and Quality Control

All echocardiographic studies were retrieved from the institutional picture archiving and
communication system (PACS). All echos underwent pre-processing analogous to that described
in the PanEcho framework.’

Pixel data from two-dimensional echo videos were first extracted from DICOM files. All
videos then underwent comprehensive deidentification. Specifically, each frame was binarized
using a fixed threshold, and all pixels outside the convex hull of the largest detected contour
were masked. Videos were subsequently cropped to the central image content in a temporally
consistent manner, downsampled to a resolution of 256 x 256 pixels using bicubic interpolation,
and further deidentified by masking peripheral regions containing protected health information.’
EchoFocus-CHD Model Architecture
The EchoFocus-CHD architecture takes a set of echo videos from a single study as input and
produces multiple task-specific predictions of CHD classifications. The architecture extends
PanEcho’ by adapting the final layers of the network with additional transformer layers to allow
attention?? to operate over video clip embeddings (Figure 1B). Analogous to how a human expert
interprets an echo, the attention mechanism enables the model to selectively weight
diagnostically informative videos, enhancing the representation of relevant structural and
functional features for CHD classification.

Echo videos are first separated into 16 random sets of 16 sequential frames (called clips);
each frame (image) is individually processed with a 2D convolutional neural network

(ConvNeXt-T,? pretrained on ImageNet) to produce image embeddings. These image
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embeddings are stacked sequentially and fed into a temporal transformer, consisting of 4 layers
with 8 attention heads. This process mimics the use of transformers for interpreting natural
language sentences; in this setting, the image embeddings are like word “tokens”, and the clips
are treated as “sentences”. To capture the temporal information of the frames, a standard
positional encoding is added to the image tokens. For each clip in the echo study, the output of
the temporal transformer is aggregated using mean pooling to produce a clip-level embedding,
represented as a 768-dimensional vector.

EchoFocus-CHD then departs from the PanEcho architecture’ by introducing a study-
level transformer encoder that operates across all (number of videos x 16) clip-level embeddings
to generate a single study-level embedding. This transformer encoder leverages self-attention to
learn additional dependencies between videos in the study before moving to task prediction. The
resulting study-level embedding is then passed through fully connected layers to generate task-
specific outputs of CHD classification labels.

Model Training

The internal BCH cohort designated for model development was randomly partitioned into
training (80%) and validation (20%) sets. The model was trained using the training set, with the
validation set used exclusively for model selection. During training, pretrained PanEcho model
weights were frozen and used to generate video-level embeddings, allowing optimization to
focus on learning the parameters of the study-level transformer encoder and the fully connected,
task-specific output layers.

Training was performed using the AdamW optimizer** with a weight decay of 0.01 and a
scheduled learning rate that decreased upon plateaus in validation loss. Training was terminated

after 10 consecutive epochs without improvement in validation loss.

10
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187 Several strategies were employed to improve training robustness. Consistent with the
188  PanEcho approach,’ we utilized several image augmentation techniques (cropping, rotation, and

189  flipping), to improve robustness to imaging noise. On layers following PanEcho, dropout®

was
190  applied during training at a rate of 0.2 with an additional clip-level dropout at 0.5 to enhance

191  robustness to missing video clips.

192 For hyperparameter tuning, we varied the depth of the study-level transformer encoder (1,
193 5,10, and 20 layers), the learning rate (0.0001-0.01), and the effective batch size (32-128). The
194  final model was selected by minimizing loss across tasks on the held-out validation set.

195  Model Performance Evaluation and Statistical Analyses

196  Model discrimination was assessed using the area under the receiver operating characteristic

197  curve (AUROC). Additional clinically relevant performance metrics included sensitivity,

198  specificity, positive and negative predictive values, positive and negative likelihood ratios (LRs),
199  and lift. These metrics were computed using decision thresholds that maximize the Youden

200  index, derived from the validation set. Confidence intervals for performance metrics were

201  estimated using 1,000 bootstrap samples.

202 Descriptive data are presented as frequencies and percentages for categorical variables
203  and median and interquartile range (IQR) for continuous variables.

204  Model Calibration Analysis

205  Model calibration was assessed via calibration plots and scaled Brier scores. Scaled Brier scores
206  measure the mean squared difference between predicted probabilities and observed outcomes,

207  scaled relative to the score of a non-informative model predicting the cohort’s outcome

208  prevalence. This scaling accounts for differences in outcome prevalence across cohorts and

11
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provides an interpretable metric ranging from 0 (no improvement over baseline) to 1 (perfect
prediction).
Sensitivity and Subgroup Analyses
We evaluated the model’s robustness for detecting exclusively unrepaired CHD through a
sensitivity analysis that excluded echos from patients with prior cardiac interventions (i.e.,
catheterization or surgery), as determined by Fyler codes. To assess sensitivity to outcome
labeling, we compared model performance when using structured Fyler code labels versus labels
automatically extracted from echo report text by an internal instance of GPT-40-mini (OpenAl,
San Francisco, CA).

Subgroup analyses were performed on the test cohorts stratified by age and number of
echo videos per study. Age groupings were adapted from prior work?® and defined as age < 1
(infant), 1-3, 3-8, 8-12, 12-18 years, and age >18 years. Echo videos per study groupings were
defined as <25, 26-50, 51-75, 76-100, and >100. Model discrimination within each age subgroup
was assessed using AUROC.
Model Adjudication
Four expert cardiac imagers characterized model errors through an adjudication process: for both
internal and external studies, 2 experts each independently reviewed 25 random false positive
and 25 random false negative infant echos. Adjudicators reviewed the full echo study and were
blinded to patient name, echo report, model predictions, and to each other’s assessments. For
each echo, adjudicators were asked to classify the study into one of 4 categories: 1) critical CHD;
2) non-critical CHD; 3) indeterminate (due to inadequate image quality); or 4) indeterminate

(due to evolving physiology requiring follow-up, such as suspected coarctation of the aorta in the

12
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231  presence of a ductus arteriosus). Adjudication outcomes between internal and external cohorts
232 were compared using the Fisher’s exact test.

233 For the purposes of evaluating agreement in a triage context, we calculated Cohen’s

234  kappa (k) when grouping indeterminate studies with non-critical studies to yield a binary critical
235  versus non-critical/indeterminate classification. A Cohen’s k value of 1 indicates perfect

236  agreement, 0 indicates agreement equivalent to chance, and values less than 0 indicate agreement
237  worse than chance.

238  Model Explainability

239  To interpret model predictions, an integrated gradients-based explainability analysis was

240  performed for one left-sided lesion (hypoplastic left heart syndrome) and one right-sided lesion
241  (tetralogy of Fallot). For each lesion, we selected 25 internal and 25 external echo studies with
242 positive cases and the smallest prediction errors. For each echo study, integrated gradients were
243 applied to quantify the contribution of individual video clips to the model’s predicted output.
244 The 10 most highly weighted video clips per study were identified and subsequently

245  reviewed by an expert cardiac imager, who recorded: 1) which unique echo views the model
246  prioritized; 2) whether the 5 or 10 highest prioritized video clips were sufficient to detect the
247  lesion of interest.

248  Embedding Visualization for Domain Shift Assessment

249  To explore potential domain shift?” (i.e., differences in training versus deployment echo imaging
250  conditions that can degrade performance) between internal and external echo studies, we applied
251  unsupervised Uniform Manifold Approximation and Projection (UMAP) on high-dimensional
252  embeddings produced by the EchoFocus-CHD study-level transformer encoder. We applied

253  UMAP using 15 neighbors and the cosine distance metric. The resulting space was visualized

13
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254  and qualitatively compared between internal and external cohorts to assess overlap and

255  separation that might indicate domain shift related to differences in acquisition setting, patient
256  population, or imaging protocols.

257  Data Availability and Software

258  The model and source code are available from https://echofocus.org for non-commercial,

259  academic-only purposes to accelerate research on Al-echo in pediatric cardiology. Requests for
260  BCH data and related materials will be internally reviewed to clarify if the request is subject to
261 intellectual property or confidentiality constraints. Shareable data and materials will be released
262  under a material transfer agreement for non-commercial research purposes. Use of BCH data was

263  approved by its Institutional Review Board.

14
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RESULTS
Patient Population Characteristics

From the 234,807 transthoracic echos at Boston Children’s Hospital meeting inclusion
criteria, 60,683 were first time studies per patient. After excluding echos with <10 DICOM files
per study (n=2,600), there were 58,083 studies remaining, forming the main cohort (Figure 1A).
Of those, 54,727 were internal studies and 3,356 studies were sent from outside centers: 2,365
from patients across the US, and 991 from international patients. International patients resided in
58 countries spanning 6 continents: North America, South America, Europe, Asia, Africa, and
Australia.

As shown in Table 1, there were numerous differences between the internal and external
cohorts. There were 2.6 million, 0.8 million, and 0.2 million videos within the internal
development, internal testing, and outside cohorts, respectively (Table 1). The internal studies
had more videos per study (median 75) compared to outside studies (median 46). Internal studies
were performed at an older age (median age at echo 7.1 [IQR, 0.2-15.0] years) compared to
external studies (median age at echo 2.5 [IQR, 0.3-9.4] years). There was a substantially higher
prevalence of CHD in the external cohort (29.4% critical CHD; 45.6% non-critical CHD)
compared to the internal cohort (5.8% critical CHD; 23.6% non-critical CHD). For details of
prevalence for individual lesions within each cohort, see Table 1.

EchoFocus-CHD Model Performance

Model performance metrics of EchoFocus-CHD for individual critical CHD lesions during
internal and external testing are shown in Figure 2 and Tables S1-S4. During internal testing,
performance was excellent for a majority of lesions: AUROC 0.97 for Ebstein anomaly; AUROC

>0.99 for single ventricle lesions such as hypoplastic left heart syndrome, tricuspid atresia, and

15
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287  any single ventricle lesion; AUROC >0.97 for conotruncal lesions such as double outlet right
288  ventricle, D-loop transposition of the great arteries, truncus arteriosus, and tetralogy of Fallot;
289  AUROC 0.96 for atrioventricular canal defects and pulmonary atresia; AUROC 0.90 for

290  coarctation of the aorta; and AUROC 0.83 for total anomalous pulmonary venous connection. In
291  comparison, there was a reduction in performance for the overall external cohort across all

292  individual critical CHD lesions, with AUROC ranging from 0.70-0.85 (Figure 2).

293 For individual non-critical CHD lesions, internal performance ranged from AUROC 0.70
294  (anomalous coronaries) to 0.96 (ductus arteriosus). For atrial and ventricular septal wall defects,
295  AUROC was 0.87 and 0.91, respectively (Table S2). Externally, performance also declined for
296  non-critical CHD lesions. For example, external AUROC decreased to 0.80 for patent ductus
297  arteriosus, 0.74 for atrial septal defect, and 0.72 for ventricular septal defect. Tables S2-S5 list
298  performance metrics for individual non-critical CHD lesions.

299 When assessing the composite critical CHD outcome (Figure 3), internal performance
300  was excellent in both the overall internal cohort (AUROC 0.94) and the infant subgroup

301  (AUROC 0.93). In contrast, performance was lower in the external cohort (AUROC 0.77 for all
302  external studies, 0.74 for US external studies, and 0.82 for international external studies), which
303  further declined for the infant cohort (AUROC 0.71 for all external studies, 0.68 for US external
304  studies, and 0.73 for international external studies). Calibration analysis (Figure S1) showed a
305 moderate scaled Brier score of 0.405 for the internal cohort, whereas the external cohorts

306  exhibited poor calibration, with scaled Brier scores of 0.045 for the overall external cohort, 0.005
307  for the external US cohort, and 0.067 for the external international cohort.

308  Subgroup and Sensitivity Analyses
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During sensitivity analysis, model performance to detect the composite critical CHD outcome
was unchanged when excluding echos with prior cardiac interventions (internal AUROC 0.94
[95% CI, 0.93-0.95]; external AUROC 0.74 [95% CI, 0.72-0.76]). In addition, using labels
generated by a large language model from echo report free text did not alter model performance
(Table S6).

Subgroup analyses by study size demonstrated lower performance for critical CHD
detection in studies with fewer than 25 videos (Table S7), whereas no consistent performance
trends were observed across age subgroups (Table S8).

Expert Adjudication

Expert adjudication was performed on 50 internal and 50 external discrepant test cases for both
false negatives and false positives. For false negatives, adjudicators determined that 42% of
internal cases were in fact negative, compared with 12% of external cases (Figure 4A). For false
positives, adjudicators determined that 10% of internal cases were indeed positive, compared
with 20% of external cases. The distributions of adjudication outcomes differed significantly
between internal and external cohorts for both false negatives (p<0.001) and false positives
(p=0.01). Inter-rater agreement was high internally (Cohen’s k=0.82) with a drop to k=0.72
externally, suggesting greater diagnostic ambiguity in the external cohort.

Model Explainability Analysis

Across both internal and external test cohorts, model explainability consistently prioritized the
same views to detect hypoplastic left heart syndrome and tetralogy of Fallot: parasternal long-
axis, parasternal short-axis, and subxiphoid long-axis views (Figure 5A). In the majority of
studies (range of 76-100%), the top 5 and top 10 attention-weighted clips were sufficient for an

expert cardiac imager to determine the presence or absence of critical CHD (Figure 5B). There

17


https://doi.org/10.64898/2026.01.24.26344771
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.64898/2026.01.24.26344771; this version posted January 26, 2026. The copyright holder for this preprint

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

was no significant difference between internal and external cohorts in the ability to identify
critical CHD from these clips.

Exploring and Addressing Domain Shift

To explore whether domain shift contributed to lower external performance, we visualized study-
level embeddings using UMAP. As shown in Figure S2A, internal studies formed several dense
clusters, which only partially overlapped with the external clusters. Notably, some external
studies occupied regions of the embedding space that were sparsely populated by internal
studies, suggesting the presence of domain shift. This is particularly evident in the bottom right
quadrant, where there was a high density of external critical CHD (Figure S2B).

To address domain shift, we retrained EchoFocus-CHD using an expanded model
development cohort that incorporated all US external studies in addition to the original BCH
training set. The BCH test cohort and the external international cohort were excluded from
training. As shown in Figure 6, internal model performance for the composite critical CHD
outcome remained excellent and largely unchanged across the overall cohort, infants, and
individual critical CHD lesions (Table S9). Internal calibration was also unchanged (Figure S3).
In the external international cohort, performance for the composite critical CHD outcome
improved with AUROCSs of 0.87 for the overall cohort and 0.84 for infants (Figure 6). External
calibration also improved to 0.151 (Figure S3). For 10 of 12 individual critical CHD lesions,
AUROC increased by a median of 0.08.

Across the retrained internal versus external cohorts, sensitivity was similar (86-88%),
while specificity was lower in the external international cohort (72% versus 89%). The negative
LR was comparable between cohorts (0.13-0.19), whereas the positive LR was higher in the

internal cohort (7.8 vs. 3.2). Across internal and external cohorts, positive predictive values were
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355 33%[95% CI, 32-34%] and 35% [95% CI, 30-41%], respectively; negative predictive values
356  were 99% [95% CI, 99-99%] and 97% [95% CI, 96-98%], respectively. Full external

357 international performance metrics are provided in Table S10.
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DISCUSSION

In this study, we developed a view-agnostic, multi-task Al-echo model for automated detection
of a broad spectrum of CHD lesions. The model introduces a novel study-level transformer
encoder as an extension of the PanEcho’ framework, enabling integration of information across
multiple video clips in a manner analogous to how cardiologists synthesize findings across
views, highlighting both the architectural innovation and clinical plausibility of this approach.
Using the largest pediatric echo dataset reported to date, we demonstrate excellent internal
discrimination for both composite and individual CHD outcomes. We further evaluate the
model’s external generalizability across a large, geographically diverse external referral cohort,
identifying performance degradation partly attributable to domain shift and demonstrating that
discrimination and calibration can be improved through retraining with more heterogeneous data.
Expert adjudication revealed lower inter-rater agreement externally among pediatric
cardiologists, suggesting that external cases missed by the model may represent diagnostically
challenging studies rather than unequivocal errors. Altogether, EchoFocus-CHD illustrates the
potential of Al-echo to function as a clinical decision-support tool, prioritizing and triaging
studies in resource-limited settings to optimize timely access to scarce pediatric cardiology and
congenital surgery expertise, rather than serving as a replacement for clinician interpretation.
Global Disparities in Pediatric Cardiology Care

There is an underrecognized global burden of pediatric heart disease,?® with CHD constituting a
leading cause of childhood non-communicable mortality worldwide.! It is estimated that more
than 90% of children born with CHD reside in LMICs, which together account for 94% of global
CHD-related mortality.?®* Even in more developed nations, CHD related mortality is higher in

rural and more resource-constrained regions.’® Reducing these inequities is therefore central to
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381 achieving the United Nations’ Sustainable Development Goals targeting reductions in neonatal
382  and under-five mortality by 2030.3!

383 Despite this urgency, many pediatric cardiac care systems remain fragile, driven in large
384  part by critical shortages of clinicians with specialized expertise in the diagnosis and

385  management of pediatric heart disease.?® For example, most countries in sub-Saharan Africa and
386  many in Asia lack structured training programs in pediatric cardiology and congenital cardiac
387  surgery’! and facilities capable of performing infant or neonatal cardiac surgery.*? Existing

388  models of pediatric heart care in high-income countries are unfeasible for LMICs, requiring

389 alternative and context-appropriate strategies to facilitate timely referral to specialized centers.
390  Similar challenges and proposed solutions have been described in rural and underserved regions
391  of high-income countries such as the US.

392 Within this framework, EchoFocus-CHD was developed as an initial step toward

393  enabling scalable, technology-assisted CHD screening and prioritization, with the goal of

394  extending limited pediatric cardiology expertise to settings where it is most constrained.

395  Clinical Implications of EchoFocus-CHD

396  EchoFocus-CHD is intended to function as a triage and decision-support tool in resource-

397  constrained settings, where access to pediatric cardiology expertise is limited and timely

398  prioritization of high-risk patients is critical. In this context, the model’s operating characteristics
399  support clinically meaningful risk stratification. Internally, EchoFocus-CHD demonstrated high
400  sensitivity and specificity (both ~90%), corresponding to strong positive and negative LRs (7.8
401  and 0.13, respectively; Table S9). Externally, sensitivity remained high (0.86) with moderate
402  specificity (0.72), yielding a preserved negative LR of 0.13 and a positive LR of 3.2 (Table S10).

403  These findings indicate that the model is particularly effective for ruling out critical CHD (with
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negative predictive values of 97-99% across cohorts), a key requirement for triage applications in
which false negatives carry substantial clinical risk. In addition, approximately one-third of cases
flagged as positive by EchoFocus-CHD were confirmed to be critical CHD (i.e., positive
predictive value of 33-35% across cohorts).

Notably, the performance metrics likely underestimate true clinical accuracy, as
adjudication identified a subset of cases initially labeled as incorrect that were either correct,
evolving physiology (e.g., suspected coarctation of the aorta in the setting of a patent ductus
arteriosus), diagnostically ambiguous, or challenging even for expert readers. Importantly,
EchoFocus-CHD demonstrated good internal calibration, with improved calibration in the
retrained external international cohort. In low-resource environments where downstream
resources such as specialist consultation, transport, or advanced imaging are limited, well-
calibrated risk estimates may allow for rational prioritization rather than reliance on binary
classification alone. Beyond binary triage, EchoFocus-CHD provides lesion-specific subtype
predictions, which may further inform urgency, anticipated clinical course, and referral
pathways.

Importance of Real-World Deployment

A central objective of this study was to evaluate model performance in a large, diverse cohort
that was geographically and demographically distinct from the training population, reflecting
conditions expected during real-world deployment. Model performance declined in the external
cohort (Figure 3), independent of outcome labeling approach (i.e., Fyler versus large language
model), number of videos per study, or differences in patient age. While top selected views were
consistent across cohorts (Figure 5A) and clinically relevant (Figure 5B), there were discernable

differences in the model representations between internal and external datasets (Figure S2).
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Domain shift—the phenomenon where a model’s performance degrades when applied to data
that differ from its training set—is anticipated in pediatric echo, a modality characterized by
substantial variability in vendor-specific image processing, operator-dependent acquisition
techniques, image quality, and institution-specific protocols. These factors introduce meaningful
heterogeneity that must be carefully considered as Al-based echo tools move toward clinical
deployment.

To help disentangle two plausible sources of domain shift in this study (underlying
patient population versus echo acquisition), we incorporated external US referral echos into the
training set. The observed improvement in external international performance following this
retraining step suggests that a component of the generalization gap is attributable to differences
in image acquisition/processing rather than solely to population-level differences. This finding
highlights the importance of dataset heterogeneity, particularly with respect to imaging practices,
for improving model robustness.

Limitations and Future Directions

Several limitations merit consideration. First, despite retraining on a more heterogeneous US
cohort, performance on the external international cohort remains below the threshold for safe
clinical deployment. This highlights the ongoing need to improve model generalizability, which
could be addressed through strategies such as: 1) exploring alternative/hybrid architectures (e.g.,
EchoPrime)'* or learning approaches (e.g., adversarial learning®); 2) developing a pediatric and
CHD-specific foundation model to generate a more robust embedding space; 3) leveraging multi-
institutional or federated learning approaches to incorporate data from both large and small
centers;** and 4) multi-modal approaches,* such as integrated Al-enabled ECG.***® Second,

although model performance was comparable when using either Fyler-coded labels or large
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language model-extracted labels from echo reports, both approaches are imperfect. Fyler codes
are highly granular but may be affected by human documentation limitations, while large
language model-extracted labels are prone to misinterpretation of report text. Consequently,
labeling errors may persist. Third, although our external validation set was geographically
diverse, certain regions of particular clinical interest (most notably sub-Saharan Africa) were not
represented, potentially limiting the generalizability of findings to areas with the greatest unmet
need. Fourth, our models rely on transthoracic echos acquired by trained sonographers;
translation to low-resource or point-of-care settings will require validation on portable ultrasound
studies, which may have lower image quality and greater operator variability. Fifth, while the
model encompasses a broad spectrum of lesions, it does not provide predictions for all pediatric
heart conditions (e.g., Kawasaki disease, rheumatic heart disease, cardiomyopathy). Finally,
while integrated gradients-based explainability was performed, further work is needed to
evaluate how these visualizations impact clinician trust and decision-making in practice.

Future directions should include continued model refinement for low-resource settings,
prospective multi-site evaluation in diverse healthcare environments, and formal assessment of
clinical utility and workflow integration.

Conclusions

EchoFocus-CHD demonstrates that large-scale, multi-task AI models show promise to detect a
wide range of CHD lesions from routine echo. At the same time, our findings highlight the
critical importance of external validation, calibration assessment, and domain shift mitigation for
real-world implementation. By identifying both strengths and limitations, this work provides a
foundation for future prospective studies and iterative deployment strategies to advance

equitable, scalable CHD care worldwide.
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TABLES
Table 1: Baseline Characteristics of Internal and External Cohorts
Internal Cohort Outside Studies
External External External
Development Testing (US) (International) (Combined)
Patients 43782 10945 2365 991 3356
TTEs 43782 10945 2365 991 3356
Videos 2617348 818487 119152 48332 167484
Videos Per Study 75 (63, 87) 75 (63, 88) 45 (31, 65) 47 (30, 65) 46 (31, 65)
Age at TTE 7.11 (0.25,14.96) 6.96 (0.20,14.99) | 2.17 (0.34,8.96) 3.3 (0.33,10.40) 2.46 (0.33,9.36)
Sex (Male) 23291 (53.20%) 5752 (52.55%) | 1295 (54.76%) 529 (53.38%) 1824 (54.35%)
Cfi‘t’i‘g’l"é‘ltfl) 2525(5.77%)  628(5.74%) | 810(34.25%) 177 (17.86%) 987 (29.41%)
ALCAPA 7 (0.02%) 2(0.02%) 3(0.13%) 0 (0.00%) 3 (0.09%)
AP window 13 (0.03%) 5 (0.05%) 7 (0.30%) 0 (0.00%) 7(0.21%)
DORV 163 (0.37%) 35 (0.32%) 116 (4.90%) 30 (3.03%) 146 (4.35%)
D-loop TGA 235 (0.54%) 62 (0.57%) 55 (2.33%) 17 (1.72%) 72 (2.15%)
Ebstein 83 (0.19%) 25 (0.23%) 54 (2.28%) 17 (1.72%) 71 (2.12%)
HLHS 194 (0.44%) 42 (0.38%) 70 (2.96%) 24 (2.42%) 94 (2.80%)
IAA 33 (0.08%) 16 (0.15%) 10 (0.42%) 2 (0.20%) 12 (0.36%)
Tricuspid Atresia 82 (0.19%) 13 (0.12%) 11 (0.47%) 7(0.71%) 18 (0.54%)
Truncus Arteriosus | 48 (0.11%) 13 (0.12%) 17 (0.72%) 4 (0.40%) 21 (0.63%)
SV Disease 330 (0.75%) 70 (0.64%) 113 (4.78%) 41 (4.14%) 154 (4.59%)
Tetralogy of Fallot | 515 (1.18%) 104 (0.95%) 86 (3.64%) 16 (1.61%) 102 (3.04%)
AVCD 406 (0.93%) 109 (1.00%) 254 (10.74%) 35 (3.53%) 289 (8.61%)
CoA 806 (1.84%) 203 (1.85%) 131 (5.54%) 21 (2.12%) 152 (4.53%)
TAPVC 71 (0.16%) 13 (0.12%) 20 (0.85%) 8 (0.81%) 28 (0.83%)
Critical AS 10 (0.02%) 2 (0.02%) 4(0.17%) 1 (0.10%) 5(0.15%)
Critical PS 26 (0.06%) 8 (0.07%) 2(0.08%) 0 (0.00%) 2 (0.06%)
Pulmonary Atresia | 244 (0.56%) 55 (0.50%) 85 (3.59%) 26 (2.62%) 111 (3.31%)

Noni‘j’fi‘t‘i’;’:;téHD 10277 (23.47%) 2619 (23.93%) | 1232 (52.09%) 298 (30.07%) 1530 (45.59%)
ASD 3037 (6.94%) 771 (7.04%) | 441(18.65%)  95(9.59%) 536 (15.97%)
[Anomalous Coronaries| 302 (0.69%) 69 (0.63%) 49 (2.07%) 6 (0.61%) 55 (1.64%)
BAV 1212 (2.77%) 287 (2.62%) 212 (8.96%)  35(3.53%) 247 (7.36%)
Cor Triatriatum 23 (0.05%) 4 (0.04%) 5(0.21%) 1 (0.10%) 6 (0.18%)
Double Aortic Arch | 82 (0.19%) 17 (0.16%) 10 (0.42%) 0 (0.00%) 10 (0.30%)
Left PA sling 15 (0.03%) 3 (0.03%) 4(0.17%) 1 (0.10%) 5(0.15%)
LSVC 574 (1.31%) 141 (1.29%) 85 (3.59%) 13 (1.31%) 98 (2.92%)
L-loop TGA 61 (0.14%) 19 (0.17%) 68 (2.88%) 27 (2.72%) 95 (2.83%)
PAPVC 266 (0.61%) 63 (0.58%) 40 (1.69%) 10 (1.01%) 50 (1.49%)
PDA 4521 (1033%) 1238 (11.31%) | 198 (8.37%) 94 (9.49%) 292 (8.70%)
Right Aortic Arch | 478 (1.09%) 103 (0.94%) 67 (2.83%) 9 (0.91%) 76 (2.26%)
Vascular Ring 125 (0.29%) 31 (0.28%) 14 (0.59%) 0 (0.00%) 14 (0.42%)
VSD 3177 (7.26%)  794(7.25%) | 461(19.49%)  95(9.59%) 556 (16.57%)

Data presented as frequence (percentage) and median (interquartile range).
Abbreviations: anomalous left coronary artery from the pulmonary artery (ALCAPA); aortopulmonary (AP);
bicuspid aortic valve (BAV); double outlet right ventricle (DORV); transposition of the great arteries (TGA);
hypoplastic left heart syndrome (HLHS); interrupted aortic arch (IAA); left superior vena cava (LSVC); partial
anomalous pulmonary venous connection (PAPVC); patent ductus arteriosus (PDA); single ventricle (SV);
atrioventricular canal defect (AVCD); ventricular septal defect (VSD); coarctation of the aorta (CoA); total
anomalous pulmonary venous connection (TAPVC); aortic/pulmonary stenosis (AS/PS).
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627 Figure 1: Schematic of Study Design and Model Architecture. (A) Schematic of training and
628 testing design. STROBE diagram showing initial patient selection and filtering at each data
629 processing stage (with primary outcome rates shown). Pins of origin countries for outside
630 patients inset. (B) Schematic of EchoFocus-CHD architecture and classification targets.
631 Abbreviations: transthoracic echo (TTE).
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633 Figure 2: EchoFocus-CHD Performance to Predict Individual Critical CHD Lesions.
634 Performance of EchoFocus-CHD to predict individual critical CHD lesions evaluated using the
635 internal (blue) and overall external (orange) test cohorts using receiver operating curves. Dotted
636 line represents chance. 95% confidence intervals are computed using bootstrapping.

637 Abbreviations: true positive rate (TPR); false positive rate (FPR); double outlet right ventricle
638 (DORV); transposition of the great arteries (TGA); hypoplastic left heart syndrome (HLHS);
639 tetralogy of Fallot (TOF); atrioventricular canal defect (AVCD); coarctation of the aorta (CoA);
640 total anomalous pulmonary venous connection (TAPVC).
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Figure 3: EchoFocus-CHD Performance to Predict the Composite Critical CHD Outcome.
Performance of EchoFocus-CHD to predict the composite critical CHD outcome evaluated in the
overall cohort (left) and infant subgroup (right) using the internal (blue), overall external
(orange), external US (green), and external international (red) cohorts using receiver operating
curves. Dotted line represents chance. 95% confidence intervals are shown using bootstrapping.
Abbreviations: true positive rate (TPR); false positive rate (FPR); United States (US).
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650  Figure 4. Expert Adjudication of Discrepant Cases. Expert adjudication was performed on 50
651 internal and 50 external discrepant test cases. (A) Stacked bar plot showing the proportion of
652 cases classified as no critical CHD (blue), critical CHD (amber), indeterminate due to poor
653 image quality (gray), and indeterminate due to evolving physiology requiring follow-up
654 (yellow). P-value obtained via Fisher’s exact test. (B) Heatmap displaying study-level

655 classifications assigned by each expert adjudicator; inter-rater agreement, assessed using
656 Cohen’s «, is inset. Abbreviations: congenital heart disease (CHD); false negative (FN); false
657 positive (FP).
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660 Figure 5. Expert Review of EchoFocus-CHD Model Attention for Diagnosing Critical
661  CHD. (A) Radar plots of selected views in top 10 clips for hypoplastic left heart syndrome (left)
662 and tetralogy of Fallot (right) for internal (blue) and external (red) studies. (B) Diagnostic
663  accuracy of top EchoFocus-CHD selected clips. Stacked bar plots show the proportion of studies
664 in which an expert imager could identify hypoplastic left heart syndrome (left) and tetralogy of
665 Fallot (right) from the top 5 and top 10 clips selected by the model. P-values obtained via
666 Fisher’s exact test. Abbreviations: pulmonary artery (PA).
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668 Figure 6: Retraining EchoFocus-CHD on Broader Dataset Improves Performance to
669 Predict Critical CHD. Performance of retrained EchoFocus-CHD model to predict (A) the
670  composite critical CHD outcome and (B) individual critical CHD outcomes on the internal (blue)
671 and external international (red) cohorts using receiver operating curves. Dotted line represents
672 chance. 95% confidence intervals are computed using bootstrapping.
673 Abbreviations: true positive rate (TPR); false positive rate (FPR); double outlet right ventricle
674 (DORYV); transposition of the great arteries (TGA); hypoplastic left heart syndrome (HLHS);
675 tetralogy of Fallot (TOF); atrioventricular canal defect (AVCD); coarctation of the aorta (CoA);
676 total anomalous pulmonary venous connection (TAPVC).
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